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Abstract  

This study developed a nature-inspired algorithm based on multigene genetic programming to 

predict downhole mud plastic viscosity for oil and water based muds, using data obtained from 

the field and from open literature. The initial mud plastic viscosity (IPV), downhole temperature 

(T) and downhole pressure (P) were used as the input parameters to the algorithm. To develop the 

model, 88 and 149 data points were used to develop downhole mud plastic viscosity models for oil 

based muds and water based muds respectively. To assess the performance of the models, four 

statistical error tools namely: the mean square error (MSE), mean absolute error (MAE), root 

mean square error (RMSE) and determination coefficient (R2) were adopted. The results indicate 

that the model for the oil based mud had an R2 value of 0.9499 and an MSE of 0.2507, MAE of 

3.12 and RMSE of 0.5. For the water based mud downhole viscosity model, R2 value of 0.8166 and 

an MSE of 0.1418, MAE of 2.25 and RMSE of 0.3766. In order to ascertain the parametric 

importance of the input variables used, the partial derivative sensitivity analysis was utilized. In 

this regard, the initial mud plastic viscosity had the highest influence for water based muds (70%) 

followed by the temperature (29.3%) while the pressure had the least effect (0.75%) on downhole 

mud plastic viscosity. For the oil based mud, down hole temperature had the highest influence 

(99.6%) followed by the initial mud plastic viscosity (0.3%) while downhole pressure had the least 

effect. In addition, the MGGP model was presented in an explicit form that makes it easy to be 

deployed in software applications, something rarely found in most machine learning studies. The 

study also assessed the computational speed of the developed models. This was necessary so as to 

know the efficiency of the model when deployed in software applications. With respect to execution 

speed, 18 and 16 floating point operations per second for OBM and WBMs were obtained. The 

characteristics of the proposed model for which novelty is claimed include the computational 

speed evaluation of the model, the explicit nature of the models and a proposal for field 

implementation. These results indicate the efficiency of the developed MGGP models for 

prediction of downhole mud plastic viscosity. 
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1. Introduction 

There has yet to be a well drilled without the use of drilling mud. It's no surprise that the drilling 

community regards it as the lifeline of the borehole drilling process (Agwu et al., 2015). However, 

in order for drilling mud to perform functions such as maintaining hydrostatic pressure, 

transporting and suspending drill cuttings, and so on, the fluid properties must meet international 

standards. Mud rheology is one of these properties. Rheology is fundamentally the study of fluid 

flow and deformation (Orodu et al., 2018). Gel strength, plastic viscosity, yield point, and apparent 

viscosity are all rheological properties of muds. Tracking mud rheological properties downhole is 

a critical factor in determining the success or failure of a wellbore drilling operation. This is 

because these properties deviate from their original values at subsurface conditions due to 

temperature and pressure variations (Shah et al., 2010). 

Global hydrocarbon demand is pushing the oil and gas industry to drill deeper reservoirs. 

Maintaining desirable rheological characteristics of drilling muds is one of the tasks in such 

conditions. For example, Herzhaft et al. (2001) submitted that a typical mud in a well will 

encounter temperatures ranging from 0 to 150 degrees Celsius and pressures of up to 5800 psi. 

Such a temperature and pressure range would undoubtedly affect mud rheology. However, when 

these properties are properly tracked and maintained, they help to reduce the occurrence of 

wellbore issues such as lost circulation, pipe sticking, hole cleaning, and well control. Mud 

rheological properties are primarily determined in the laboratory using a viscometer (Oguntade et 

al., 2020). Many factors can influence and change the rheological properties of deep drilling wells. 

Increasing temperature and pressure are two of the most significant factors. There is no doubt that 

significant amounts of oil and gas are trapped within the deep formations. Higher-temperature 

operations appear to be the new normal in the oil and gas industry. Drilling into reservoirs with 

high temperatures and pressures necessitates the use of a fluid with stable rheological properties. 

Elkatatny (2019) submitted that because the use of viscometers is time-consuming, tedious, and 

always requires a significant amount of energy to clean, they are only used once every 12 hours. 

However, situations on well sites always necessitate frequent measurements of mud rheological 

properties in order to assure the driller(s) of the mud's quality. The time required to complete these 

tests would not allow for rapid detection of deviations from optimal baseline mud properties. 

Therefore, Spelta et al. (2017) agrees that a quick test would allow for immediate corrective 

actions on the mud to be implemented before downhole problems escalate and pose a safety risk. 

As a result, Elkatatny (2019) strongly supports the pursuit of real-time mud rheology estimation. 

A marsh funnel is used in the field to make up for lost time and to make quick decisions. Mud 

viscosity is measured with a marsh funnel and is usually expressed in seconds per quartz rather 

than centipoise (Alsabaa et al., 2020). As it stands, marsh funnel tests, despite being quick, 

inexpensive, and performed every 10-15 minutes, do not provide the driller with information on 

the viscosity of the mud (Elkatatny et al., 2016). As a result, regular measurements are required to 

make effective use of the Marsh funnel viscosity. Finally, a trend analysis of the measured values 

indicates an impending mud problem. 

The drilling process becomes more complex as the search for hydrocarbons moves to unforgiving 

drilling terrains such as deep, ultra-deep offshore waters and high temperature, high pressure 

environments. In such circumstances, providing erroneous information about the rheological 
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properties of mud to the drilling crew would almost always have disastrous consequences in terms 

of drilling cost and time. Because determining mud rheology directly in the field is difficult, 

several viable approaches have been reported in the literature. Predictive models are one of these 

methods. Temperature and pressure, on the other hand, rise with depth, so producing from such 

conditions presents several challenges to petroleum engineers in terms of drilling, completion, and 

production. Changing the rheological properties of drilling fluid is one of them. Petroleum 

engineers must understand the rheological properties of drilling fluids at higher temperatures and 

pressures. Under these conditions, the success of any drilling operation is dependent on the proper 

selection and monitoring of the drilling fluid system. The ability of a fluid to perform a specific 

function is determined by its rheological properties. This necessitates the development of a reliable 

model that depicts how rheological properties change with temperature and pressure. Despite 

extensive laboratory studies and research over the past decades, there is still a lack of systematic 

understanding of how flow behavior changes with downhole conditions. 

Drilling fluid literature has been saturated over the last two decades with a series of publications 

in key journals that project models for determining fluid rheological parameters. As a result, there 

is a deluge of models in the drilling mud rheology literature. These models have taken many forms, 

including empirical, theoretical, and artificial intelligence-based models, as well as ensembles of 

models.  It was Wan (2011) who submitted that the benefit of drilling mud rheological modeling 

is that it predicts mud behavior under extreme conditions such as high stress, high temperature, 

and high pressure, where conducting experiments would be difficult. 

Despite the abundance of models for estimating drilling mud rheological parameters, they lack 

portability because it is difficult to visualize and present the model derived from these techniques 

in a compact and explicit form that a non-technical audience can appreciate. Because these 

techniques share this flaw, a research gap exists in developing a robust model with good accuracy 

and generalization ability while allowing downhole mud viscosity to be measured quickly and 

unambiguously. The primary goal of this study is to develop a new correlation that can be used to 

predict the downhole viscosity of a drilling fluid using multi-gene genetic programming (MGGP). 

As input parameters, the new correlation would be dependent on downhole pressure, temperature, 

and initial mud viscosity. The MGGP technique was chosen from a variety of artificial intelligence 

techniques for this work because it can provide explicit mathematical equations with high 

accuracy. Furthermore, the MGGP technique does not require a large data set for modeling (Agwu 

et al., 2021). To assess the effectiveness or otherwise of the developed models, they would be 

subjected to scrutiny of previously unseen or unfamiliar data that is essentially outside of their 

comfort zones. 

i. The main methods that exist in literature for predicting mud plastic viscosity are the 

multiplicative factor method, linear regression method and relative dial readings method. 

These methods have a fixed form, thereby making them incapable of handling non-

linearities in data. Thus results obtained from such models are inaccurate. 

ii. Artificial neural networks have equally been used to model mud plastic viscosity. 

However, existing models are limited to predicting mud viscosity at surface conditions. 

None has been developed for modelling mud viscosity at downhole conditions where 

temperature and pressure play dominant roles. In addition, although ANN models possess 
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good predictive power, the models evolved by the technique often come at the price of 

some higher difficulties in optimization, interpretability and generalizability (local optima 

issues). Furthermore, ANNs require time to search for the optimal number of hidden 

neurons, require lots of data, and the evolved models are complex (due to the numerous 

weights and biases involved). Using more hidden neurons than required will add more 

complexity to the model.  

iii. The MGGP technique was selected in this work from the array of artificial intelligence 

techniques because it can provide the explicit mathematical equations with high accuracy. 

In addition, the MGGP technique does not need a large data size for modelling  

2. Review of Related Literature 

A summary of existing models for predicting plastic viscosity is presented in Table 2.1 For ease 

of reference, the researches are arranged from the earliest to the latest as presented by different 

researchers. In a bid to make the summary detailed, the modelling technique used by each 

researcher is highlighted, the drilling fluid type used, the number of data points, the input variables 

as well as the correlation developed by each researcher and their performance where applicable. 

From Table 2.1, the following are observed. First, model inputs and mud type varied in the 

examined literature. For most of the rheological models highlighted in Table 2.1, the input 

variables: mud density, marsh funnel viscosity and solid content runs through most of them. 

Table 2.1: Previous works on modelling of mud plastic viscosity  

Author, 

year 

Method 

used 
Mud type Input parameters 

Output 

parameter 

American 

Petroleum 

Institute 

(2010) 

- 
For HTHP 

wells 

Effective viscosity at the 

temperature T1 ;  effective 

viscosity at the pressure 

P1, temperature, pressure  

Effective 

viscosity 

Makinde 

et al. 

(2011) 

Regression WBM 
Aging time and 

temperature 

Plastic 

viscosity 

Guria et al 

(2013) 
- - 

Shear stress at 600 RPM 

and 300 RPM 

Plastic 

viscosity 

Elkatatny 

et al . 

(2016) 

ANN 

3 – 12 – 1  

Invert 

emulsion 

mud 

Marsh funnel viscosity, 

solid content, and mud 

density  

Plastic 

viscosity 

Al-Azani 

et al. 

(2018) 

ANN 

3 – 11 – 1  
OBM 

Marsh funnel viscosity, 

mud weight, solid percent 

Plastic 

viscosity 

Avci 

(2018) 

ANN 

2 – 12 – 1  

Water-based  

drilling fluid 
Shear rate, temperature Shear stress 

Tchameni 

et al. 

(2018) 

ANN  

[2 – 6 – 1 ] 

 

Waste 

vegetable oil 

biodiesel 

Biodiesel content and 

aging temperature 

Plastic 

viscosity 
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Author, 

year 

Method 

used 
Mud type Input parameters 

Output 

parameter 

modified 

WBM 

Elzenary 

(2019) 

ANN 

ANFIS 

Invert 

emulsion 

mud 

Marsh funnel viscosity, 

mud weight, solid percent 

Plastic 

viscosity 

Elkatatny 

(2019) 

ANN 

3 – 30 – 1  

 

NaCl water 

based drill-in 

fluid 

Marsh funnel viscosity, 

mud weight, solid percent 

Plastic 

viscosity 

Gowida et 

al. (2019) 

ANN 

2 – 20 – 1  
CaCl2 brine 

Marsh funnel viscosity, 

mud weight 

Plastic 

viscosity 

Elkatatny 

(2020) 

ANN 

2 – 38 – 1 
NaCl mud 

Mud weight and Marsh 

funnel viscosity  

Plastic 

viscosity 

Gomaa et 

al. (2020) 

ANN 

2 – 22 – 1  

High-

overbalanced 

bridging  

mud 

Mud density and Marsh 

funnel viscosity 

Plastic 

viscosity 

Gowida et 

al. (2020) 

ANN 

2 – 20 – 1  

WBM 

 

Mud density and Marsh 

funnel viscosity 

Plastic 

viscosity 

Alsabaa et 

al. (2020) 
ANFIS 

Invert 

Emulsion 

Mud 

Mud weight and Marsh 

funnel viscosity  

Plastic 

viscosity 

 

3. Materials and Methods 

3.1 Data collection  

Downhole mud viscosity values were obtained from daily drilling data reports from different 

drilling companies as well as from comprehensive review of literature on experiments conducted 

by various researchers. From this collection, 88 data points were collated for the oil based mud 

viscosity while 149 data points were collated for the downhole viscosity of water based mud. Table 

3.1 summarises the input variables from the data collected and their respective units of 

measurement. Basically three inputs were isolated namely: Mud initial viscosity, downhole 

temperature and downhole pressure. 

Table 3.1: Input variables in data collected for the study  

Input 

variable 

Initial mud 

viscosity 

Downhole temperature Downhole pressure 

Unit Centipoise (cP) Degree Fahrenheit (°F) Pounds per square inch 

(psi) 

 

3.2 Statistical features of data collected   
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The descriptive statistics of the data obtained is shown in Table 3.2a and Table 3.2b for water 

based mud and oil based mud respectively. 

 

 

 

 

Table 3.2a: Descriptive statistics of downhole viscosity data for water based mud  

  

Initial plastic 

viscosity 

Downhole 

Temperature 

Downhole 

pressure  

Downhole Plastic 

viscosity 

Mean 21.00375839 89.74765101 8799.187919 16.73147651 

Median 19.98 93 4000 16 

Mode 20 26 3000 20 

Standard 

deviation 11.89730451 56.84331188 9257.161923 8.610828457 

Maximum  43.8 200 24801 47 

Minimum  4.94 4 14.5 2.91 

Range  38.86 196 24786.5 44.09 

 

Table 3.2b: Descriptive statistics of downhole viscosity data for oil based mud 

  

Initial plastic 

viscosity 

Downhole 

Temperature 

Downhole 

pressure  

Downhole Plastic 

viscosity 

Mean 62.93636364 108.6489899 5332.136364 34.20379503 

Median 51.1 100 870 29 

Mode 93.9 65.55555556 870 19 

Standard 

deviation 25.5026083 60.81594779 8855.519641 23.81652133 

Maximum  93.9 315.5555556 40000 105.6603774 

Minimum  29 20 0 6.79245283 

Range  64.9 295.5555556 40000 98.86792453 

 

3.3 Method adopted for the study 

In this study, the software tool EUREQA is used to execute the multigene genetic programming 

algorithm for the estimation of downhole viscosity of water and oil based muds. This software is 

a new “Genetic Programming and Symbolic Regression” code written based on multi-gene GP for 

use as a standalone software. The MGGP method is applied to the datasets collected in Section 

3.1.  

3.4 An Overview of Multigene Genetic Programming (MGGP) 

Multi-gene genetic programming (MGGP) is a modified form of genetic programming in which 

the genes are weighted together to form the approximation function (Kusznir and Smoczek, 2022). 
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In MGGP, there is an additional high-level crossover operation. As long as the maximum number 

of genes is not exceeded, an individual's genes can be switched with the genes of another 

individual. 

According to Niazkar (2023), MGGP is essentially one of the artificial intelligence models and is 

capable of looking for an appropriate relationship between any input and output collection of data. 

Given its adaptable design and robust search engine, it inevitably has the ability to be used for 

resolving a variety of issues. 

The goal of the MGGP is to produce ''multi-gene'' mathematical models of predictor response data, 

that is, linear combinations of low-order nonlinear transformations of the input variables. The 

evaluation of a single tree (model) expression serves as the foundation for the conventional GP 

representation (Gandomi and Alavi, 2012). A single GP individual (program) in multi-gene 

representation is built from a number of genes, each of which is a tree expression (Searson et al., 

2010). 

3.4.1 Procedure for Model Development 

The MGGP algorithm would follow the following steps:  

i. Set the initial parameters (e.g. the function and terminal set, the number of generations, the 

population size and the maximum depth of gene)  

ii. Randomly generate the initial population of genes.  

iii. Using the method of least squares, construct the models by combining a set of genes.  

iv. Based on the fitness function, evaluate the models performance.  

v. Carry out the genetic operations; then construct a new population.  

vi. Evaluate the performance of the models by benchmarking it with the termination criterion; if not 

satisfied then go to 

vii. Else select the evolved model as the best. 

 

3.5 Parameter settings for implementing MGGP  

Trial-and-error approach used to select the parameter settings is shown in Table 3.3. The broader 

set of elements is chosen in the function set since this can provide a broader class of non-linear 

mathematical models. The elements in the terminal set are the three input process variables and 

random constants in the range [−10 10]. The population size is the number of models generated in 

one generation. The number of generations is the number of iterations that an algorithm makes 

before the termination criterion is satisfied. Their adjustment depends on the nature of the 

regression problem. In the present study, the population size is set to a value of 300 and the number 

of generations is set to a value of 40. The size of search space and number of models searched 

within the space are directly influenced by the maximum number of genes and maximum depth of 

the gene. Based on the problem, the maximum number of genes and maximum depth of gene are 

kept at 8 and 6, respectively. 
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Table 3.3: Parameter settings for the MGGP method 

Parameters  Values assigned 

Runs  20 

Population size  300 

Number of generations 40 

Tournament size 2 

Maximum depth of tree 6 

Maximum genes 8 

Functional set (F) (Multiply,plus, minus, divide, tan, tanh, cos) 

Terminal set (T) IPV, T, P [-10 10] 

Crossover probability rate 0.85 

Reproduction probability rate 0.10 

Mutation probability rate  0.05 

 

4. Results and Discussion 

4.1 Explicit Representation of the Developed Models 

The capacity to replicate a model—that is, to get the same results using the same data and code—

is improved by explicitly presenting the models. Most research that use machine learning overlook 

the two concepts of reproducibility and replicability (Mikowski et al., 2018). As stated by Stroebe 

and Strack (2014), very few published machine learning research contain source code, and those 

that do almost never provide details on how the model was built. The model developed for the 

downhole viscosity of water based muds is shown in Equation 4.1 while the model for downhole 

oil based mud viscosity prediction is shown in Equation 4.2. 

𝐷𝑜𝑤𝑛ℎ𝑜𝑙𝑒 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑓𝑜𝑟 𝑊𝐵𝑀 = (𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑉) + (0.000195𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) − cos(−3.83 ∗ 104 ∗
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑉) − 2.78 sin(103 ∗ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑉) − (9.22 ∗ 10−5 ∗ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ∗ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑉2) −
1.56 ∗ 10−6 ∗ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ∗ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑉3 ∗ sin (sin(9.76 ∗ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒))   Equation 4.1 

 

𝐷𝑜𝑤𝑛ℎ𝑜𝑙𝑒 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑓𝑜𝑟 𝑂𝐵𝑀 = 40.5 + 0.00525𝑃 +
22.7∗𝐼𝑃𝑉

𝑇
+ (1.47 ∗ 10−5 ∗ 𝐼𝑃𝑉 ∗ 𝑇2) +

(−0.0021∗𝐼𝑃𝑉2)

cos (𝐼𝑃𝑉)
− (0.224 ∗ 𝑇) − (0.273 ∗ 𝐼𝑃𝑉) − (2.71 ∗ 10−5 ∗ 𝑃 ∗ 𝑇)                             

Equation 4.2 

Where IPV = Initial plastic viscosity; T = temperature; P = pressure 

 

4.2 Model Performance Metrics 

A statistical or machine learning model's performance and efficacy are measured quantitatively 

using evaluation metrics. These metrics aid in comparing various models or algorithms and offer 
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information on how well the model is working. In this work, the metrics used include: goodness 

of fit (R2), mean square error (MSE), mean absolute error (MAE) and root mean square error 

(RMSE).The performance metrics for the water based mud downhole viscosity is presented in 

Table 4.1 while the oil based mud downhole viscosity is presented in Table 4.2.  

Table 4.1: Model performance evaluation for downhole viscosity of water based muds  

Metric  R2 MSE MAE RMSE 

Value 0.8166 0.1418 2.256 0.3766 

  

Table 4.2: Model performance evaluation for downhole viscosity of oil based muds  

Metric  R2 MSE MAE RMSE 

Value 0.9499 0.25 3.12 0.5 

 

4.3 Comparison of Developed Model Predictions Against Actual Data 

Figures  4.1  and  4.2  are  the  plots  of  the  actual  data  against  the  predictions  from  the 

developed MGGP models for WBM and OBM respectively. From both figures, it can be seen that 

the developed models have the capacity to capture to a reasonable extent  the non-linearities 

associated with the prediction of drilling fluid plastic viscosity at downhole conditions. 

 

Figure  4.1:  Comparison  of  actual  values  and  MGGP  model  predictions  for  WBM  

viscosity at downhole conditions 
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Figure  4.2:  Comparison  of  actual  values  and  MGGP  model  predictions  for  OBM  

viscosity at downhole conditions 

 

4.4 Variable Sensitivity Analysis 

According to Tunkiel et al. (2020), there is little research on traditional sensitivity analysis of 

machine learning regression models. The majority of data-driven models are complicated "black 

boxes" with little opportunity for mathematical knowledge of the underlying, self-assembled 

model. Sensitivity analysis might reveal unpredictable behaviour resulting from overfitting or a 

small training sample. Additionally, it can direct the use and evaluation of models. Table 4.3 shows 

the sensitivity analysis for downhole WBM viscosity while Table 4.4 shows the sensitivity analysis 

for downhole viscosity of OBMs. 

Table 4.3: Model variable sensitivity for WBM downhole viscosity 

Variable Sensitivity  % Positive Positive 

magnitude  

% Negative Negative 

Magnitude 

Initial PV 18.874 58% 9.2513 42% 32.105 

Temperature 7.921 50% 5.5545 50% 10.288 

Pressure  0.20512 100% 0.20512 0% 0 

 

 

 

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

D
o

w
n

h
o

le
 V

is
co

si
ty

 (
cP

)

Number of Data Points

Actual Data MGGP Model Prediction



 
World Journal of Innovation And Modern Technology E-ISSN 2756-5491 P-ISSN 2682-5910  

Vol 7. No. 1 2023 www.iiardjournals.org 

 

 

 

 IIARD – International Institute of Academic Research and Development 
 

Page 77 

Table 4.4: Model variable sensitivity for OBM downhole viscosity 

Variable Sensitivity  % Positive Positive 

magnitude  

% Negative Negative 

Magnitude 

Temperature 1451.2 4% 362.12 96% 1493 

Initial PV 4.84 0% 0 100% 4.84 

Pressure  0.48288 100% 0.48288 0% 0 

 

Sensitivity: This is the relative impact within this model that a variable has on the target variable. 

Given a model equation of the form: 𝑧 = 𝑓(𝑥, 𝑦 … . ), the influence metrics of x on z are defined 

for sensitivity as follows:  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦: |
𝜕𝑧

𝜕𝑥
| .

𝜎(𝑥)

𝜎(𝑧)
 

The sensitivity is evaluated at all input data points. 

% Positive: The likelihood that increasing this variable will increase the target variable. 

Mathematically, % positive is the percentage of data points where  
𝜕𝑧

𝜕𝑥
> 0. Since % positive is 

58% for initial plastic viscosity, then 58% of the time, increases in initial plastic viscosity leads to 

increases in the downhole viscosity. This is the same with the downhole temperature. In this case, 

50% of increases in the downhole temperature leads to increase in the downhole mud viscosity. 

However, for downhole pressure, 100% positive means that at all times an increase in downhole 

pressure always leads to an increase in downhole mud viscosity. 

% Negative: This factor indicates that the likelihood of increasing this variable will decrease the 

target variable. Mathematically, % negative is the percentage of data points where  
𝜕𝑧

𝜕𝑥
< 0. In this 

case, for mud initial plastic viscosity, 42% of the time, increases in the initial mud plastic viscosity 

leads to a decrease in downhole mud viscosity. The same applies to the downhole temperature. 

Half the time, an increase in downhole temperature leads to a decrease in downhole mud viscosity. 

However, for the downhole pressure that has a %negative of 0%, this means that no matter the 

increase in downhole pressure, there is no likelihood that it would decrease the downhole mud 

viscosity. 

Positive magnitude: This is essentially how big the positive impact is. It is derived when increases 

in a variable leads to increases in the target variable. Mathematically, positive magnitude is 

represented as |
𝜕𝑧

𝜕𝑥
| .

𝜎(𝑥)

𝜎(𝑧)
  at all points where: 

𝜕𝑧

𝜕𝑥
> 0. In the case of the three input variables 

considered, the positive impact that the initial mud viscosity has is the largest (9.25) followed by 

the downhole temperature (5.55) while the downhole pressure had the least value of 0.205. 

Negative magnitude: This is essentially how big the negative impact is. It is derived when 

increases in a variable leads to decreases in the target variable. Mathematically, positive magnitude 

is represented as |
𝜕𝑧

𝜕𝑥
| .

𝜎(𝑥)

𝜎(𝑧)
  at all points where 

𝜕𝑧

𝜕𝑥
< 0.  In the case of the three input variables 
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considered, the negative impact that the initial mud viscosity has is the largest (32) followed by 

the downhole temperature (10) while the downhole pressure had the least value of 0. 

Where: 
𝜕𝑧

𝜕𝑥
 is the partial derivative of z with respect to x; 𝜎(𝑥) is the standard deviation of x in the 

input data; 𝜎(𝑧) is the standard deviation of z; |𝑥| denotes the absolute value of x and  𝑥̅ denotes 

the mean of x. 

4.5 Computational Speed of the Developed Models 

In order for a mathematical model to be useful, it needs to be deployed in software. The efficiency 

of a model in software is assessed on one part by the computational burden of the model. This 

involves the speed of computation by the model and the memory the model consumes. According 

to Khan Academy (2022), an efficient algorithm is essentially that which takes the least execution 

time and lowest memory footprint while still providing a correct output. Estimating the algorithm 

complexity is an important part of the design of an algorithm since it gives important information 

about its envisaged performance. 

Simply counting the number of computations a model performs gives a sense of its speed. This is 

commonly measured in FLOPs, or floating point operations per second. FLOPs will be applied to 

the amount of computation for a given task (e.g., a prediction or inference pass), by referring to 

the number of operations, counting a multiply-add operation pair as two operations (Desislavov et 

al., 2023).  We often count operations like addition, subtraction, multiplication, division, 

exponentiation, square roots, etc. as a single FLOP when computing FLOPS. For example, y = x 

* 2 * (y + z*w) is 4 floating-point operations. From Table 4.7,  

The models in Equation 4.1 and Equation 4.2 for calculating downhole viscosity involve several 

mathematical operations, including addition, subtraction, multiplication, exponentiation, cosine, 

sine, and nested trigonometric functions. 

To estimate the floating-point operations (FLOPs) for this formula, we need to consider the number 

and complexity of these operations. 

Assuming each operation counts as a single FLOP, we can break down the FLOPs count for the 

WBM downhole viscosity in Equation 4.1 as follows: 

• Addition and subtraction: 2 FLOPs (one each) 

• Multiplication: 7 FLOPs (one for each multiplication operation) 

• Exponentiation: 1 FLOP (one exponentiation operation) 

• Cosine and sine: 7 FLOPs (one for each cosine and sine evaluation) 

• Nested sine: 1 FLOP (one sine evaluation within the other sine evaluation) 

Therefore, the total FLOPs count for the given formula is approximately 18 FLOPs. 
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To calculate the FLOPs (floating-point operations) for the given formula for downhole viscosity 

in OBM, we can break down the operations involved and count the number of FLOPs: 

• Addition and subtraction: 4 FLOPs (two additions and two subtractions) 

• Multiplication: 9 FLOPs (five multiplications) 

• Division: 1 FLOP (one division) 

• Exponentiation: 1 FLOP (one exponentiation) 

• Cosine: 1 FLOP (one cosine evaluation) 

Therefore, the total FLOPs count for the given formula is approximately 16 FLOPs. 

 

Table 4.5: Speed comparison of developed models using FLOPs computations 

Model  FLOPs 

WBM 

downhole 

plastic 

viscosity 

model 

𝐷𝑜𝑤𝑛ℎ𝑜𝑙𝑒 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑓𝑜𝑟 𝑊𝐵𝑀
= (𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑉) + (0.000195𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)
− cos(−3.83 ∗ 104 ∗ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑉)
− 2.78 sin(103 ∗ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑉)
− (9.22 ∗ 10−5 ∗ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ∗ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑉2) − 1.56
∗ 10−6 ∗ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ∗ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑉3

∗ sin (sin(9.76 ∗ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)) 

18 

OBM 

downhole 

plastic 

viscosity 

model 

𝐷𝑜𝑤𝑛ℎ𝑜𝑙𝑒 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑓𝑜𝑟 𝑂𝐵𝑀 = 40.5 + 0.00525𝑃 +
22.7∗𝐼𝑃𝑉

𝑇
+ (1.47 ∗

10−5 ∗ 𝐼𝑃𝑉 ∗ 𝑇2) +
(−0.0021∗𝐼𝑃𝑉2)

cos (𝐼𝑃𝑉)
− (0.224 ∗ 𝑇) − (0.273 ∗ 𝐼𝑃𝑉) −

(2.71 ∗ 10−5 ∗ 𝑃 ∗ 𝑇)                              

16 

 

From Table 4.5, a comparison of the FLOPs of the developed models for mud viscosity estimation 

was carried out; it is found that the OBM model developed in this study has a small number of 

FLOPs, implying that its speed of computation would be faster than the WBM model. This makes 

this model useful for real time deployment in the field where mud PV data are required in real time 

4.5 Application of Developed Models in a Typical Drilling Fluid Circulating System  

The real essence of developing a machine learning model (ML) is to work out the solution to a 

problem; and a ML based model can only achieve this when it is deployed and used actively by 

the end users. Thus proposing a means by which the developed models can be deployed is one way 

of ensuring the aim of developing the models is achieved. This is so because it takes time, energy 

and cost to create a model, hence if there is no clear cut plan, then there is no need embarking on 

the venture. First, machine learning models require data and lots of it. Hence the data source for 

the model developed if to be deployed in a drilling fluid system has to be ascertained. In this case, 
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the data for the model inputs would be obtained from sensors that transmit it to a database that can 

be stored on-premise, in cloud storage, or in a hybrid of the two. Two sensors are proposed in this 

study. Each sensor collects data temperature and pressure data as the well depth increases. Now, 

the data would be pre-processed and retrieved in real time. An interface box or analogue to digital 

converter (ADC) is required to transform the analogue data emanating from the sensors into a 

digital data format that can be processed by a computer. Since real time predictions are to be made, 

an inference engine would retrieve the input data automatically and prediction is carried out 

immediately the inference request is made. The third input parameter which is the initial plastic 

viscosity is obtained from a one-time viscometer measurement made at the surface before the start 

of drilling operations. This value would be pre-inputted into the model. The other parameters 

pressure and temperature would now be fed into the model as a continuous stream. Figure 4.3 

illustrates this. Since the proposed MGGP models would not train, run, and deploy itself, therefore 

software and hardware that help in the effective deployment of the MGGP model is required. The 

procedure of building any computer software starts with identifying the main purposes of that 

program and the tasks it is going to perform, then the most compatible environment and 

programming language are chosen. Some examples of frameworks that can be utilized include: 

Tensorflow, Pytorch, and Scikit-Learn coupled with a programming language like Python. The 

framework option to be chosen is fundamentally important since it has a huge influence on the 

continuity, maintenance and use of a model. The framework and the platforms it can support is 

another area to be noted. For instance, it is important to find out whether the framework would 

support mobile or web environments. A platform (Windows, Linux or Mac OS) should be chosen. 

It is proposed that the windows platform is adopted. Since downhole mud viscosity is required in 

real time, it is important to know how to get feedback from a model while drilling is in progress 

and how to ensure that a continuous record of outputs. The outputs could be in graphical form. 
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Figure 4.3: Schematic representation of the proposed implementation of the developed 

models for field utilization 

 

 

5. Conclusion and Recommendation 

 

5.1 Conclusion 

On the basis of the results obtained in this study, the following are the main conclusions:  

i. Most of the existing correlations for predicting mud plastic viscosity are useful for 

estimating mud plastic viscosity at the surface and not at downhole conditions where 

temperature and pressure have pronounced effects on mud rheology. Therefore using these 

models to estimate mud viscosity at downhole conditions result in erroneous values.  

ii. There existing correlations for mud plastic viscosity at downhole conditions were 

essentially developed with a small range of data. This makes the models limited in terms 

of their prediction range.   

iii. The MGGP model presented in this study has an explicit nature thus making it deployable 

in software applications as opposed to the black box nature of other AI based models.  
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iv. The results from this study give a positive indication of the potential offered by artificial 

intelligence techniques for analysing the available field data and creating models to predict 

the downhole mud plastic viscosity. This can be of great assistance for avoiding costly and 

time consuming HTHP viscometer experiments.  

 

5.2 Recommendations for Further Studies 

There are still some things to think about despite the study's innovative conclusions. These 

include:  

i. In this study, MGGP was solely employed to forecast downhole mud plastic viscosity. The 

predictive power of the model can be increased by combining MGGP with evolutionary 

algorithms.  There are various alternatives to try out in the world of evolutionary 

algorithms. Particle swarm optimization, artificial bee colonies and ant colony optimization 

are three of the most intriguing. Another area that needs investigation is which of them 

would be better suited for optimizing the wellbore cleaning procedure during drilling by 

using the mud plastic viscosity. This can be done by thoroughly comparing all of them. 

ii. Another issue that merits investigation is how to enable the developed algorithms to handle 

a stream of evolving data rather than fixed data such as the one used in this study. 

iii. It is necessary to run models against various datasets to evaluate their effectiveness. To 

assure data availability for the testing, extensive experiments and/or numerical simulations 

should be run under diverse scenarios.   
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